Viscosities of Single-Solute and Binary-Solute Aqueous Systems of Monoethanolamine, Diethanolamine, and 2-Amino-2-methyl-1-propanol

Francisco Chenlo,* Ramón Moreira, Gerardo Pereira, María J. Vázquez, and Elena Santiago

Department of Chemical Engineering, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain

The kinematic viscosities of binary solutions of monoethanolamine (MEA), diethanolamine (DEA), and 2-amino-2-methyl-1-propanol (AMP) with water and of ternary mixtures were measured at various concentrations (from 0 to up 2.0 mol·kg⁻¹ at 0.5 mol·kg⁻¹ intervals) and temperatures (from 293.1 K up to 323.1 K at 5.0 K intervals). Experimental viscosity data were correlated with concentration and temperature for single-solute and binary-solute solutions by means of empirical equations with deviations up to 1.2% and 1.9%, respectively.

Introduction

The removal of CO_2 from gaseous streams by absorption with chemical reaction in the liquid phase is usually employed both in the industry and as a method to retain atmospheric CO_2 to combat the greenhouse effect. Normally, aqueous solutions of amines are used to enhance the absorption rate of the process with respect to the physical absorption. These processes are carried out in aqueous single-solute or binary-solute solutions that produce an increase of the absorption enhancement factor.^{1,2} The use of blended amines^{3,4} or the sterically hindered amines^{5,6} leads to a considerable improvement in absorption and a great savings in energy.The simultaneous presence of fine activated carbon particles and one or several amines in aqueous suspensions constitutes a system of considerable interest.^{7–10}

The design of industrial absorption columns and the application of absorption models requires knowledge of the mass-transfer coefficients of the corresponding physical and chemical absorption processes. These data are commonly obtained from laboratory gas—liquid mass-transfer experiments. To calculate the required parameters from the experimental mass-transfer data, certain physical properties must be known, among them the viscosity of the liquid phase. In the literature few viscosity data have been reported as a systematic study with the concentration and temperature for these solutions of interest in the process of gas—liquid mass transfer. This paper reports measurements of kinematic viscosities of single-solute and binary-solute aqueous solutions of MEA, DEA, and AMP.

Experimental Section

Binary solutions of monoethanolamine (MEA), diethanolamine (DEA), and 2-amino-2-methyl-1-propanol (AMP) with water and of their ternary mixtures were made up at concentrations ranging from (0 to 2.0) mol·kg⁻¹ (molality) at 0.5 mol·kg⁻¹ intervals, both solutions of one or two solutes, and their viscosities were measured at tempera-

 $\ensuremath{^*}\xspace{To}$ whom correspondence should be addressed. E-mail: eqchenlo@usc.es.

Figure 1. Kinematic viscosities of aqueous binary-solute systems with 1 mol·kg⁻³ MEA versus DEA concentration m_2 at various temperatures: 293.1 K (**D**); 298.1 K (**D**); 303.1 K (**O**); 308.1 K (**C**); 313.1 K (**A**); 318.1 K (**A**); 323.1 K (**O**).

tures ranging from 293.1 K to 323.1 K at 5.0 K intervals. MEA (>99% pure), DEA (>98.5% pure), and AMP (>95.5% pure) were Merck products. Water was distilled and desgassed. Solutions were made up by weighing of solutes and solvent on a Mettler AJ 150 balance precise to within ± 0.0001 g, and in what follows their concentrations are expressed as molality (mol·kg⁻¹ solvent); none deviated from the nominal value by as much as $\pm 0.02\%$. All solutions were filtered before use.

The kinematic viscosities of the solutions at temperatures ranging from 293.1 K to 323.1 K in 5.0 K intervals were calculated from the transit time of the liquid meniscus through a capillary, measured to a precision of ± 0.01 s in a Schott–Geräte AVS 350 automatic Ubbelohde viscosimeter. All measurements were quintuplicated; and values

	$10^6 \nu/m^2 \cdot s^{-1}$									
<i>T</i> /K	$m_2/mol \cdot kg^{-1} = 0.0000$	$m_2/\text{mol}\cdot\text{kg}^{-1} = 0.2500$	$m_2/\text{mol}\cdot\text{kg}^{-1}=0$	0.5000 $m_2/\text{mol}\cdot\text{kg}^{-1} = 1.0000$	m_2 /mol·kg ⁻¹ = 1.5000	$m_2/mol \cdot kg^{-1} = 2.0000$				
	m_1 /mol·kg ⁻¹ = 0.0000									
293.1	1.004	1.078	1.185	1.403	1.634	1.902				
298.1	0.893	0.968	1.053	1.233	1.430	1.656				
303.1	0.801	0.852	0.939	1.101	1.261	1.444				
308.1	0.724	0.771	0.841	0.978	1.119	1.280				
313.1	0.658	0.699	0.761	0.882	1.006	1.142				
318.1	0.602	0.639	0.693	0.801	0.908	1.025				
323.1	0.553	0.595	0.635	0.723	0.823	0.932				
	$m/mol \cdot kg^{-1} = 0.2500$									
293.1	1.044	1.138	1.226	1.442	1.705	1.971				
298.1	0.926	1.006	1.081	1.264	1.487	1.717				
303.1	0.827	0.900	0.963	1.118	1.309	1.499				
308.1	0.747	0.810	0.867	0.999	1.162	1.324				
313.1	0.680	0.736	0.783	0.900	1.038	1.181				
318.1	0.622	0.671	0 712	0.816	0.934	1 060				
323.1	0.572	0.616	0.652	0.744	0.846	0.956				
			m./mol.	$k\sigma^{-1} = 0.5000$						
293.1	1.096	1 188	1 285	1 506	1 764	2 019				
208.1	0.967	1.100	1 1 2 6	1 323	1 534	1 758				
202 1	0.864	0.025	1.120	1.525	1 245	1.750				
200.1	0.790	0.949	0.001	1.170	1 104	1.555				
212 1	0.780	0.042	0.099	1.042	1.194	1.334				
010.1	0.710	0.700	0.011	0.939	1.009	1.203				
310.1	0.048	0.697	0.740	0.849	0.904	1.061				
323.1	0.595	0.040	0.082	0.772	0.870	0.976				
		1 222	m_1/mol	$kg^{-1} = 1.0000$	1 0 0 0					
293.1	1.195	1.283	1.394	1.626	1.889	2.194				
298.1	1.052	1.124	1.227	1.421	1.632	1.893				
303.1	0.939	1.003	1.094	1.255	1.427	1.650				
308.1	0.844	0.897	0.977	1.117	1.264	1.453				
313.1	0.766	0.815	0.879	1.004	1.129	1.287				
318.1	0.698	0.739	0.797	0.905	1.017	1.151				
323.1	0.639	0.677	0.726	0.824	0.920	1.036				
			$m_1/\text{mol}\cdot$	$kg^{-1} = 1.5000$						
293.1	1.295	1.397	1.501	1.748	2.033	2.327				
298.1	1.141	1.227	1.314	1.518	1.761	1.999				
303.1	1.015	1.088	1.162	1.330	1.541	1.734				
308.1	0.911	0.972	1.031	1.185	1.348	1.524				
313.1	0.822	0.874	0.926	1.053	1.205	1.354				
318.1	0.747	0.792	0.837	0.947	1.080	1.210				
323.1	0.683	0.721	0.764	0.861	0.977	1.091				
			<i>m</i> ₁/mol∙	$kg^{-1} = 2.0000$						
293.1	1.405	1.508	1.632	1.879	2.181	2.521				
298.1	1.234	1.320	1.424	1.631	1.880	2.161				
303.1	1.094	1.167	1.255	1.447	1.640	1.869				
308.1	0.984	1.042	1.117	1.266	1.444	1.637				
313.1	0.882	0.939	1.005	1.129	1.287	1.445				
318 1	0 798	0.849	0 907	1 017	1 147	1 292				
323 1	0.731	0.043	0.824	0.920	1 034	1 159				
5~0.1	0.701	0.775	0.024	0.020	1.001	1.155				

Table 1. Kinematic Viscosities of Monoethanolamine (1) + Diethanolamine (2) Aqueous Solutions at Various Molalities m and Temperatures T

deviating by more than 0.2% from the mean were discarded. Tridistilled water and 1-propanol were employed to calibrate the apparatus. The measured kinematic viscosities of both solvents from 293.1 K to 323.1 K all were within 0.2% of published values.^{11,12} The temperature was controlled with a thermostated water bath with a precision of ± 0.05 K.

Results

Tables 1–3 list the kinematic viscosities of the aqueous solutions of MEA + DEA, MEA + ADP, and DEA + AMP, respectively, from 293.1 K to 323.1 K and in the concentration range (0 to 2) mol·kg⁻¹ for each solute. In all cases, at fixed concentration of solute *i*, the kinematic viscosity increases when the solute *j* concentration is increased. Moreover, the kinematic viscosity decreased with the temperature.

The experimental data presented of single-solute aqueous solutions were compared with the results reported by other authors in the range of concentration and temperatures employed. In this way, the maximum deviation between experimental data and the data obtained by correlations for kinematic viscosities of MEA solutions^{13–15}

Figure 2. Kinematic viscosities of aqueous binary-solute systems with 1 mol·kg⁻³ MEA versus AMP concentration m_3 at various temperatures: 293.1 K (**D**); 298.1 K (**D**); 303.1 K (**O**); 308.1 K (**O**); 313.1 K (**A**); 318.1 K (**A**); 323.1 K (**O**).

Table 2. Kinematic Viscosities	of Monoethanolamine (1) + 2-Amino-2-met	hyl-1-propanol (3)) Aqueous Solutions :	at
Various Molalities <i>m</i> and Temp	peratures T				

	$10^6 u/{ m m}^2 \cdot { m s}^{-1}$							
<i>T</i> /K	$m_3/mol \cdot kg^{-1} = 0.0000$	m_3 /mol·kg ⁻¹ = 0.2500	$m_3/\text{mol}\cdot\text{kg}^{-1} = 0.500$	00 m_3 /mol·kg ⁻¹ = 1.0000	m_3 /mol·kg ⁻¹ = 1.5000	$m_3/\text{mol}\cdot\text{kg}^{-1} = 2.0000$		
	$m_{ m l}/{ m mol}\cdot{ m kg}^{-1}=0.0000$							
293.1	1.004	1.099	1.193	1.426	1.699	1.987		
298.1	0.893	0.978	1.051	1.247	1.474	1.686		
303.1	0.801	0.874	0.933	1.102	1.293	1.447		
308.1	0.724	0.786	0.841	0.980	1.135	1.281		
313 1	0.658	0 711	0 761	0.885	1 017	1 133		
318 1	0.602	0.648	0.691	0.000	0.912	1.100		
310.1	0.553	0.548	0.630	0.750	0.812	0.928		
020.1	0.000	0.000	m/moleka-1	- 0.2500	0.000	0.000		
293.1	1.044	1.135	1.242	1,478	1.761	2.062		
298 1	0.926	1 003	1 094	1 283	1 523	1 765		
200.1	0.827	0.893	0.968	1 128	1 320	1.703		
200.1	0.747	0.855	0.500	1.120	1.525	1.925		
300.1	0.747	0.800	0.809	1.002	1.171	1.333		
313.1	0.080	0.729	0.789	0.899	1.040	1.160		
318.1	0.622	0.667	0.713	0.822	0.930	1.053		
323.1	0.572	0.011	0.654	0.749	0.838	0.947		
	4		m ₁ /mol·kg ⁻¹	h = 0.5000	4 9 9 9			
293.1	1.096	1.175	1.294	1.545	1.826	2.141		
298.1	0.967	1.047	1.138	1.341	1.564	1.832		
303.1	0.864	0.932	1.009	1.179	1.360	1.580		
308.1	0.780	0.836	0.902	1.044	1.197	1.386		
313.1	0.710	0.756	0.813	0.938	1.067	1.219		
318.1	0.648	0.690	0.738	0.848	0.959	1.091		
323.1	0.595	0.631	0.675	0.767	0.863	0.977		
			$m_1/mol \cdot kg^{-1}$	$^{1} = 1.0000$				
293.1	1.195	1.280	1.401	1.665	1.956	2.293		
298.1	1.052	1.132	1.228	1.445	1.670	1.962		
303.1	0.939	1.003	1.085	1.266	1.463	1.687		
308.1	0.844	0.903	0.966	1.123	1.283	1.474		
313.1	0.766	0.813	0.871	1 005	1 138	1 296		
318 1	0.698	0.739	0 790	0 904	1 018	1 155		
323 1	0.639	0.733	0.700	0.823	0.916	1.035		
525.1	0.000	0.077	m/moleka-1	0.025	0.510	1.055		
202.1	1 205	1 408	1 510	- 1.5000	2 003	2 111		
200 1	1.2.55	1.400	1.313	1.705	1 902	2.444		
202 1	1.141	1.234	1.329	1.330	1.603	1 796		
303.1	1.015	1.092	1.172	1.341	1.560	1.780		
308.1	0.911	0.974	1.044	1.185	1.366	1.555		
313.1	0.822	0.875	0.937	1.058	1.210	1.370		
318.1	0.747	0.792	0.848	0.950	1.081	1.214		
323.1	0.683	0.720	0.771	0.859	0.972	1.091		
			$m_1/\text{mol·kg}^{-1}$	1 = 2.0000				
293.1	1.405	1.497	1.638	1.919	2.252	2.593		
298.1	1.234	1.311	1.434	1.658	1.926	2.196		
303.1	1.094	1.159	1.258	1.445	1.662	1.881		
308.1	0.984	1.032	1.118	1.271	1.453	1.631		
313.1	0.882	0.926	1.000	1.133	1.284	1.432		
318.1	0.798	0.838	0.904	1.016	1.146	1.270		
323.1	0.731	0.764	0.820	0.920	1.029	1.137		
				30				

was 2.5% and that with respect to other experimental data¹⁶ was 2.2%. For DEA solutions deviations with respect to data of correlations^{13–15,17} were less than 2.4% and 1.8% for other experimental data.^{16,18} Finally, for AMP solutions was obtained 3.0% for data of correlation¹³ and 2.3% with respect to other experimental data.¹⁹

The viscosity data for each single-solute solution were correlated with the molality m_i or m_j , and absolute temperature T was expressed by means of the empirical equation

$$\Delta \nu_i / (\mathbf{m}^2 \cdot \mathbf{s}^{-1}) = \nu_i - \nu_0 = A m^B \exp(C / T^D)$$
(1)

and for binary-solute systems the equation is

$$\nu_{i+j}(\mathbf{m}^2 \cdot \mathbf{s}^{-1}) = \nu_0 + \Delta \nu_i + \Delta \nu_j + E m_i m_j \exp(F/T^D) \quad (2)$$

where ν_0 is the kinematic viscosity of water obtained from the literature¹¹ for each temperature, the parameter D =2 (obtained by optimization for all systems), and *A*, *B*, *C*, *E*, and *F* are parameters to optimize.

Tables 4 and 5, respectively, show the values of optimized parameters A, B, and C for single-solute systems and the values of parameters E and F for binary-solute

Figure 3. Kinematic viscosities of aqueous binary-solute systems with 1 mol·kg⁻³ DEA versus AMP concentration m_3 at various temperatures: 293.1 K (**D**); 298.1 K (**D**); 303.1 K (**O**); 308.1 K (**C**); 313.1 K (**A**); 318.1 K (**A**); 323.1 K (**O**).

			10 ⁶ v/1	$m^{2} \cdot s^{-1}$		
<i>T</i> /K	$\overline{m_3/\text{mol}\cdot\text{kg}^{-1}=0.0000}$	m_3 /mol·kg ⁻¹ = 0.2500	m_3 /mol·kg ⁻¹ = 0.5000	m_3 /mol·kg ⁻¹ = 1.0000	m_3 /mol·kg ⁻¹ = 1.5000	$m_3/mol\cdot kg^{-1} = 2.0000$
			$m_2/\text{mol}\cdot\text{kg}^{-1} =$	0.0000		
293.1	1.004	1.099	1.193	1.426	1.699	1.987
298.1	0.893	0.978	1.051	1.247	1.474	1.686
303.1	0.801	0.874	0.933	1.102	1.293	1.447
308.1	0.724	0.786	0.841	0.980	1.135	1.281
313.1	0.658	0.711	0.761	0.885	1 017	1 133
318.1	0.602	0.648	0.691	0.796	0.912	1 026
323.1	0.553	0.596	0.630	0.717	0.820	0.928
			$m_2/mol\cdot kg^{-1} =$	0.2500		
293.1	1.078	1.196	1.294	1.548	1.835	2.144
298.1	0.968	1.056	1.137	1.351	1.583	1.827
303.1	0.852	0.938	1.010	1.184	1.379	1.577
308.1	0.771	0.844	0.908	1.052	1.212	1.378
313.1	0.699	0.764	0.823	0.941	1.074	1.217
318.1	0.639	0.695	0.742	0.850	0.960	1.085
323.1	0.595	0.635	0.676	0.770	0.863	0.974
			$m_{\rm 2}/{\rm mol}\cdot{\rm kg}^{-1}=$	0.5000		
293.1	1 185	1 293	1 403	1 697	1 978	2 321
298 1	1 053	1 135	1 231	1 468	1 696	1 986
303 1	0.939	1 016	1 087	1 283	1 471	1 708
308.1	0.841	0 905	0.970	1 131	1 292	1 487
313 1	0.761	0.814	0.873	1.005	1 150	1 309
318 1	0.693	0.744	0.792	0.901	1.100	1 163
323.1	0.635	0.674	0.722	0.812	0.927	1.042
			$m/mol \cdot k\sigma^{-1} =$	1 0000		
202.1	1 403	1 519	1 679	1 050	2 276	2 608
2001	1.403	1.012	1.072	1.000	1 049	2.030
202 1	1.200	1.317	1.441	1.007	1.040	1.050
200.1	1.101	1.105	1.207	1.400	1.001	1.950
010.1	0.976	1.037	1.124	1.202	1.400	1.090
313.1	0.002	0.931	1.001	1.141	1.290	1.477
310.1	0.801	0.843	0.907	1.021	1.140	1.304
323.1	0.723	0.768	0.824	0.922	1.031	1.100
			$m_2/mol \cdot kg^{-1} =$	1.5000		
293.1	1.634	1.790	1.931	2.261	2.651	3.098
298.1	1.430	1.555	1.667	1.934	2.245	2.608
303.1	1.261	1.363	1.451	1.673	1.918	2.219
308.1	1.119	1.205	1.278	1.463	1.667	1.907
313.1	1.006	1.074	1.141	1.285	1.469	1.658
318.1	0.908	0.963	1.021	1.148	1.297	1.460
323.1	0.823	0.870	0.922	1.031	1.160	1.303
			$m_2/\mathrm{mol}\cdot\mathrm{kg}^{-1} =$	2.0000		
293.1	1.902	2.055	2.216	2.622	3.049	3.497
298.1	1.656	1.785	1.906	2.231	2.573	2.843
303.1	1.444	1.552	1.653	1.921	2.195	2.483
308.1	1.280	1.370	1.452	1.675	1.891	2.138
313.1	1.142	1.216	1.287	1.472	1.657	1.850
318.1	1.025	1.086	1.150	1.306	1.459	1.619
323.1	0.932	0.980	1.035	1.170	1.303	1.432

Table 3. Kinematic Viscosities of Diethanolamine (2) + 2-Amino-2-methyl-1-propanol (3) Aqueous Solutions at Various Molalities *m* and Temperatures *T*

Table 4. Parameters (A, B, and C) of Eq 1 and Maximum ϵ_{max} and Average ϵ_{ave} Deviations for the Dependence of the Kinematic Viscosity of the Listed (MEA, DEA, and AMP Aqueous Solutions) Systems on the Solute Concentration at Various Temperatures

system	$10^{9}A/m^2 \cdot s^{-1} \cdot (mol \cdot kg)^{-B}$	В	$10^{-5}C/K^{-2}$	$\epsilon_{\rm max}$ /%	$\epsilon_{\rm ave}$ /%
MEA	1.8558	1.0857	3.9668	0.56	0.24
DEA	3.0510	1.1433	4.1938	1.13	0.49
AMP	1.8069	1.1356	4.7147	1.21	0.69

Table 5. Parameters (*E* and *F*) of Eq 2 and Maximum ϵ_{max} and Average ϵ_{ave} Deviations for the Dependence of the Kinematic Viscosity of the Listed (MEA + DEA, MEA + AMP, and DEA + AMP Aqueous Solutions) Systems on the Solute Concentration at Various Temperatures

system	$10^{12} E' m^2 \cdot s^{-1} \cdot (mol \cdot kg)^{-2}$	$10^{-5} F/K^{-2}$	$\epsilon_{\rm max}$ /%	$\epsilon_{\rm ave}$ /%
MEA + DEA	7.7623	7.4602	1.65	0.48
MEA + AMP	2.4284	8.6070	1.95	0.83
DEA + AMP	29.8853	7.2782	1.89	0.82

systems. Additionally, in each table the maximum and average deviations between the experimental and predicted values employing eq 1 and eq 2 are shown.

Figures 1–3 show experimental data and the fitted values of some systems, as examples, particularly, binarysolute systems with one solute with concentration 1 *m* and the other variable (MEA (1 *m*) + DEA; MEA (1 *m*) + AMP; and DEA (1 *m*) + AMP). In all cases, the cited behavior of kinematic viscosity with temperature and solute concentration is observed; furthermore, the proposed correlation is satisfactory in all ranges of concentration and temperature assayed.

Literature Cited

- Rinker, E.; Ashour, S.; Sandall, O. Kinetics and Modelling of Carbon Dioxide Absorption into Aqueous Solutions of *N*-Methyldiethanolamine. *Chem. Eng. Sci.* **1995**, *50*, 755–768.
- (2) Pani, F.; Gaunand, A.; Cadours, R.; Bouallou, Ch.; Richon, D. Kinetics of Absorption of CO_2 in Concentrated Aqueous Methyldiethanolamine Solutions in the Range 296 K to 343 K. *J. Chem. Eng. Data* **1997**, *42*, 353–359.
- (3) Hagewiesche, D.; Ashour, S.; Al-Ghawas, H.; Sandall, O. Absorption of Carbon Dioxide into Aqueous Blends of Monoethanolamine and N-Methyldiethanolamine. *Chem. Eng. Sci.* 1995, *50*, 1071– 1079.
- (4) Dawodu, O.; Meisen, A. Degradation of Alkanolamine Blends by Carbon Dioxide. Can. J. Chem. Eng. 1996, 74, 960–966.
- (5) Messaoudi, B.; Sada, E. Absorption of Carbon Dioxide into Loaded Aqueous Solutions of 2-Amino-2-Methyl-1-Propanol. J. Chem. Eng. Jpn. 1996, 29, 534–537.

- (6) Xu, S.; Wang, Y.; Otto, F.; Mather, A. Kinetics of Reaction of Carbon Dioxide with 2-Aminio-2-Methyl-1-Propanol Solutions. Chem. Eng. Sci. 1996, 51, 841-850.
- Py, X.; Roizard, C.; Bergault, J.; Mideux, N. Physical and Chemical Mass Transfer Enhancement at Gas-Liquid Interface (7)Due to Fine Catalyst Particles. Trans. Chem. Eng. 1995, 73, 253-259
- (8) Saha, A.; Bondyopadhyay, S.; Biswas, A. Absorption of Carbon Dioxide in Alkanolamines in the Presence of Fine Activated Carbon Particles. *Chem. Eng. Sci.* **1995**, *50*, 3587–3593.
 (9) Vázquez, G.; Chenlo, F.; Vázquez, M. J.; Del Rio, A. Enhancement of CO. Absorption in a Stirrod Tank in the Presence of Support of the Presence of Support o
- of CO₂ Absorption in a Stirred Tank in the Presence of Suspended Particles. *Proceeding of 12th International Congress of Chemical* and Process Engineering, Process Engineering Pub.: Prague (Czech Republic), 1996.
- Vázquez, G.; Chenlo, F.; Vázquez, M. J. Absorption of CO₂ by Aqueous Solutions of Amines Containing Activated Carbon Particles. *Proceeding 2nd European Congress of Chemical Engi-*(10)neering, Paris (France), 1999; Société Française de Génie des Procédés: Nancy (France), 1999.
- (11) Marsh, K. N. Recommended Reference Materials for the Realization of Physicochemical Properties; Blackwell Scientific Publications: Oxford, 1987.
- (12)Vargaftik, N. B. Tables of the Termophysical Properties of Liquids
- (a) and Gases, 2nd ed.; Hemisphere: Washington, DC, 1975.
 (13) Littel, R. J.; Versteeg, G. F.; van Swaaij, W. P. M. Solubility and Diffusivity Data for the Absorption of COS, CO₂, and N₂O in Amine Solutions. J. Chem. Eng. Data 1992, 37, 39-45.

- (14) Versteeg, G. F.; van Swaaij, W. P. M. Solubility and Diffusivity of Acid Gases (CO_2 , N_2O) in Aqueous Alkanolamine Solutions. *J. Chem. Eng. Data* **1988**, *33*, 29–34.
- Weiland, R. H.; Dingman, J. C.; Cronin, D. B.; Browning, G. J. (15)Density and Viscosity of Some Partially Carbonated Aqueous Alkanolamine Solutions and Their Blends. J. Chem. Eng. Data 1998, 43, 378-382
- (16) Snijder, E. D.; te Riele, M. J. M.; Versteeg, G. F.; van Swaaij, W. P. M. Diffusion Coefficients of Several Aqueous Solutions. J. Chem. Eng. Data 1993, 38, 475-480.
- (17) Teng, T. T.; Maham, Y.; Hepler, L. G.; Mather, A. E. Viscosity of Aqueous Solutions of N-Methyldiethanolamine and of Diethanolamine. J. Chem. Eng. Data. 1994, 39, 290-293.
- Rinker, E. B.; Oelschlager, D. W.; Colussi, A. T.; Henry, K. R.; Sandall, O. C. Viscosity, Density, and Surface Tension of Binary Mixtures of Water and N-Methyldiethanolamine and Water and Diethanolamine and Tertiary Mixtures of These Amines with Water over the Temperature Range 20–100 °C. J. Chem. Eng. Data **1994**, 39, 392–395. (18)
- (19)Saha, A. K.; Bondyopadhyay, S. S.; Biswas, A. K. Solubility and Diffusivity of N2O and CO2 in Aqueous Solutions of 2-Amino-2methyl-1-propanol. J. Chem. Eng. Data 1993, 38, 78-82.

Received for review August 4, 2000. Accepted November 22, 2000. JE000241M